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Abstract—We consider a setting where multiple active sources
send real-time updates over a single-hop wireless broadcast
network to a monitoring station. Our goal is to design a
scheduling policy that minimizes the time-average of general
non-decreasing cost functions of Age of Information. We use a
Whittle index based approach to find low complexity scheduling
policies that have good performance, for reliable as well as
unreliable channels. We prove that for a system with two
sources, having possibly different cost functions and reliable
channels, the Whittle index policy is exactly optimal. For
reliable channels, we also derive structural properties of an
optimal policy, that suggest that the performance of the Whittle
index policy may be close to optimal in general. These results
might also be of independent interest in the study of restless
multi-armed bandit problems with similar underlying structure.
Finally, we provide simulations comparing the Whittle index
policy with optimal scheduling policies found using dynamic
programming, which support our results.

I. INTRODUCTION

Many emerging applications depend on the timely delivery
of status updates from a number of sources to a central
monitor over a wireless network. Examples include sensor
and actuator data for networked control systems, collecting
information for IoT applications, mobility data in vehicular
networks, and real-time surveillance and monitoring.

Age of Information (AoI) is a metric that captures timeli-
ness of received information at a destination [1], [2]. Unlike
packet delay, AoI measures the lag in obtaining information
at a destination node, and is therefore suited for applica-
tions involving gathering or dissemination of time sensitive
updates. Age of information, at a destination, is defined as
the time that has elapsed since the last received information
update was generated at the source. AoI, upon reception of a
new update packet, drops to the time elapsed since generation
of the packet, and grows linearly otherwise. Over the past
few years, there has been a rapidly growing body of work on
analyzing AoI for queuing systems [1]–[6], and using AoI as
a metric for scheduling policies in networks [7]–[14].

The problem of minimizing age of information in single-
hop networks was first considered in [7] and [8]. In these
works, the authors considered a base station collecting time-
sensitive information from a number of sources over a
wireless broadcast network, where only one source can send
an update at any given time. They looked at weighted linear
combinations of AoI of all sources as the metric to be
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optimized. This prompted the design of low complexity
scheduling policies that provably minimize weighted sum
AoI at the base station, up to a constant multiplicative factor.
These results crucially depend on the fact that for linear
AoI, one can find a stationary randomized policy that is
factor-2 optimal. As we will see later, this observation does
not hold for general functions of AoI. In fact, stationary
randomized policies can be arbitrarily worse than simple
heuristic policies.

Scheduling problems with weighted linear combinations of
age have also been considered with throughput constraints in
[9] and with general interference constraints in [10]. AoI-
based scheduling with stochastic arrivals was considered in
[13], where a Whittle Index policy was shown to have good
performance.

On the other hand, nonlinear cost functions of age were
introduced as a natural extension to the AoI metric in [2] for
characterizing how the level of dissatisfaction depends on
data staleness in a more general manner. Nonlinear functions
of age of information were also discussed in the context
of queuing systems in [15] and [16]. These papers develop
the notion of value of information and use nonlinear cost
of update delays, which correspond to nonlinear age cost
functions.

Nonlinear functions of age have also been discussed in the
context of networked control systems in [17], [18] and [19].
In [17], the authors discuss a real time networked control
system and show that the cost function is characterized as a
non-decreasing, possibly nonlinear, function of AoI. In [18],
the authors formulated the state estimation problem for an
LTI system, where the state of a discrete-time LTI system can
be observed in any time-slot by paying a fixed transmission
cost. The problem of minimizing the time-average of the
sum of the estimation error and transmission cost reduces to
minimizing a non-decreasing age-cost function for a single
source with a fixed transmission cost.

In this work, we consider a setting similar to the one in
[7] and [8]. We look at a wireless broadcast network with N
sources generating real-time updates that need to be sent to
a monitoring station. In any time-slot, only one source can
attempt a transmission to the base station. Instead of weighted
sum AoI, we are interested in minimizing the time-average of
general non-decreasing cost functions of AoI, summed over
all sources. Examples of such functions include f(x) = 2x,
f(x) = log(x), f(x) = 1{x≥10}, etc. See Fig.1 for examples.
We develop a restless mutli-armed bandit formulation for the
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Fig. 1: Linear, quadratic, logarithmic and indicator cost
functions for a sample age process. The linear process tracks
the actual values of AoI.

problem and use a Whittle Index based approach to find low
complexity scheduling policies that have good performance.

Closer to our work, scheduling to minimize functions of
age has also been considered in [11] and [12]. In [11], the
authors deal with minimizing symmetric functions of age
over multiple orthogonal unreliable channels and show that
simple greedy schemes are asymptotically optimal. In [12],
the authors formulate the general functions of age problem
with reliable channels and develop a high complexity algo-
rithm that achieves minimum age. They also derive a key
structural property of the optimal policy in this setting - the
optimal policy is always periodic. However, their approach
does not extend to the setting with unreliable channels. In
this work, we consider unreliable channels and also build
upon results from [12] and [13] to derive stronger structural
properties for optimal policies. These properties hint at why
the performance of the heuristic Whittle index policy may be
close to optimal.

The remainder of the paper is organized as follows.
In Section II, we describe the general system model. In
Section III, we describe the equivalent restless multi-armed
bandit formulation and discuss why we use the Whittle Index
approach to solve the problem. In Section IV, we discuss the
functions of age problem with reliable channels, develop the
Whittle Index solution for this setting, and also prove key
structural properties that an optimal policy must satisfy. In
Section V, we find the Whittle Index policy for the functions
of age problem with unreliable channels.

II. MODEL

Consider a single-hop wireless network with N active
sources generating real-time status updates that need to be
sent to a base station. We consider a slotted system in which
each source takes a single time-slot to transmit an update to
the base station. Due to interference, only one of the sources
can transmit in any given time-slot.

For every source i, the age of information at the base
station Ai(t) measures the time elapsed since it received a
fresh information update from the source. We assume active
sources, i.e. in any time-slot, sources can generate fresh
updates at will. Let s(t) be the source activated in time-slot
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t and ui(t) be a Bernoulli random variable with parameter
pi that denotes channel reliability between the ith source and
the base station. Then, we have

Ai(t+ 1) =

{
Ai(t) + 1, if s(t) 6= i or ui(t) = 0,

1, if s(t) = i and ui(t) = 1.
(1)

In this work, we consider general cost functions of age as
our metric of interest. For each source i, let fi(·) denote a
positive non-decreasing cost function.

Let π be a scheduling scheme that decides which sources
to schedule in every time-slot. The age process Ai(t) depends
on π and the channel processes. Then, the expected average
cost of age for source i is given by

Cave
i (π) , lim sup

T→∞

1

T
E
[ T∑
t=1

fi(A
π
i (t))

]
, (2)

where Aπi (t) is age process for the ith source under policy
π.

Our goal is find a schedule π that minimizes the sum of
average costs of age of sources. Let Π denote the set of causal
scheduling policies, then we want to solve the following
optimization problem

C∗ = min
π∈Π

N∑
i=1

Cave
i (π), (3)

where C∗ is minimum average cost and π∗ is an optimal
scheduling policy.

III. RMAB FORMULATION

In this section, we show that scheduling to minimize such
a metric can be reformulated as a restless multi-armed bandit
(RMAB).

Consider a restless multi-armed bandit problem with N
arms. The state space for every arm i is the set of positive
integers Z+. The state evolution of the arm depends on
whether it is currently active or not. Let the state of arm i at
time t be denoted by Ai(t). If arm i is active in time-slot t
then the state evolution is given by

Ai(t+ 1) =

{
Ai(t) + 1, w.p. 1− pi
1, w.p. pi.

(4)



If the arm is not active in time-slot t, then the state
evolution is given by

Ai(t+ 1) = Ai(t) + 1. (5)

For every arm i, there is a cost function fi : Z+ → R+

which maps the states of the arm to their associated costs.
Thus, the cost of a state x ∈ Z+N

is given by
∑N
i=1 fi(xi),

where x is a vector of ages and xi is the age of the ith source.
Given that only one arm can be activated in any time-slot,
the goal of the RMAB framework is to find a scheduling
policy that minimizes the total time average cost of running
this system.

This establishes the equivalence between the functions of
age problem discussed earlier and a corresponding restless
multi-armed bandit. Observe that the “restless” part of our
construction cannot be dropped, since the states of the arms
do not freeze when they are not active and there is no way
to reformulate our problem as just a multi-armed bandit
problem. If that were the case, we could have found an
optimal policy by solving for the Gittins index [20]. However,
finding optimal policies for restless bandits is much harder.
The usual approach is to find the Whittle Index policy which
provides good performance under certain conditions, namely
indexability of the RMAB problem.

In [7] and [8], the authors develop three methods to solve
the minimum age scheduling problem. First, they look at
stationary randomized policies, where a source i is scheduled
at random with a fixed probability pi. They find a stationary
randomized policy that is factor-2 optimal for weighted sum
AoI. However, this result does not hold for general functions:
even the best stationary randomized policies in our setting can
lead to an unbounded overall cost, despite there being very
simple policies that have bounded cost. We demonstrate this
with a simple example.

Consider two identical sources with cost functions given
by f(x) = 3x and reliable channels, i.e p1 = p2 = 1.
Any stationary randomized policy schedules at least one
of the sources with probability less than or equal to 0.5.
For this source, the average cost is lower bounded by
lim
T→∞

∑T
t=1(3t) 0.5T

T since with probability at least 0.5, it
does not get to transmit and its age increases by 1 in every
time-slot. Observe that this lower bound goes to infinity and
hence the average cost also goes to infinity for all stationary
randomized policies. On the other hand, a simple round-
robin scheme that schedules the two sources in alternating
time-slots guarantees bounded cost for both sensors. Thus,
stationary randomized policies can be infinitely worse than
the optimal policy for the functions of age problem.

The second method developed for age-based scheduling in
[7], [8] uses a Max-Weight approach. The authors design a
quadratic Lyapunov function for the weighted sum of linear
functions of AoI and find the max-weight policy - the policy
that maximizes the amount of negative drift in the Lyapunov
function in every time-slot. Performance guarantees for the
max-weight policy crucially rely on the fact that there exists
a stationary randomized policy that is factor-2 optimal for
linear functions of age. Since this is not the case for general

functions of age, we cannot develop a similar Max-Weight
policy for the general functions of age problem.

This finally leaves us with the third method - using a
Whittle Index based approach. In the following two sections,
we use the RMAB formulation to establish indexability for
the functions of age problem and derive a Whittle Index
policy. We also show that for the case with 2 sources and
reliable channels, the Whittle index policy is exactly optimal.
This is a novel result since the optimality of Whittle Index
policies is typically shown either only asymptotically, or in
symmetric settings for finite systems. On the other hand, our
optimality result holds for two asymmetric sources.

IV. RELIABLE CHANNELS

We first look at the problem with reliable channels between
the sources and the base station. This leads to simpler analysis
and a better understanding of the problem. Consider the setup
described in Section I with channel reliability ui(t) = 1,
for all i and t. In other words, the probability of success
pi = 1, ∀i.

In Section III, we showed that the functions of age
minimization problem is equivalent to a restless multi-armed
bandit problem. Next, we use a Whittle Index based approach
to try and solve the problem.

The first step in the Whittle Index approach is to formulate
the decoupled problem, where we consider a single arm in
isolation with a fixed charge required to activate the arm.

Definition Decoupled Problem
Consider a single arm with the state space Z+ and an
associated non-decreasing cost function f : Z+ → R+.
Let the state of the arm be A(t). Its evolution is given
by

A(t+ 1) =

{
A(t) + 1, if not active at time t
1, otherwise.

There is a strictly positive activation charge C to be paid
in every time-slot that the arm is pulled.

Our goal is to find a scheduling policy that minimizes the
time-average cost of running this system. Assuming that the
cost function f(·) is non-negative and non-decreasing, we
solve the decoupled problem using dynamic programming.
The case when the activation charge is set to zero is trivial.
The optimal policy is to always activate the arm. So, we con-
sider C to be strictly positive. The single source decoupled
problem has also been solved in a networked control system
setting in [18].

Theorem 1: The optimal policy for the decoupled
problem is a stationary threshold policy. Let H satisfy

f(H) ≤
∑H
j=1 f(j) + C

H
≤ f(H + 1). (6)



Then, the optimal policy is to activate the arm at time-
slot t if A(t) ≥ H and to let it rest otherwise. If no such
H exists, the optimal policy is to never activate the arm.

Proof: See Appendix A.
Theorem 1 establishes that the optimal policy for the

decoupled problem has a threshold structure. We now want
to show that the indexability property also holds for the
decoupled problem. The indexability property states that as
the activation charge C increases from 0 to ∞, the set of
states for which it is optimal to activate the arm decreases
monotonically from the entire set Z+ to the empty set {φ}.

Theorem 2: The indexability property holds for the
decoupled problem.

Proof: See Appendix B in the technical report [21].
The Whittle index approach states that if the decoupled

problem satisfies the indexability property, we can formulate
a heuristic index policy called the Whittle Index Policy that
has good performance.

Definition Whittle Index
Consider the decoupled problem and denote by W (h)
the Whittle index in state h. Given indexability, W (h)
is the infimum charge C that makes both decisions
(activate, not activate) equally desirable in state h. The
expression for W (h) is given by

W (h) = hf
(
h+ 1

)
−

h∑
j=1

f(j). (7)

Observe that using (6), C = W (h) is the minimum value
of the activation charge that makes both actions equally
desirable in state h. This gives us the expression for the
Whittle index.

Let Wi(x) := xfi
(
x+1

)
−
∑x
j=1 fi(j) represent the index

function for the ith decoupled problem. Using these index
functions, we can define the Whittle Index Policy.

Definition Whittle Index Policy
Let πW (t) be the action taken by the Whittle Index
Policy at time t. Then πW (t) is given by

πW (t) = arg max
1≤i≤N

{
Wi

(
Ai(t)

)}
= arg max

1≤i≤N

{
Ai(t)fi

(
Ai(t) + 1

)
−
Ai(t)∑
j=1

fi(j)

}
.

By the monotonicity of fi(·), it is easy to see that the

functions Wi(·) are also monotonically non-decreasing. This
is because Wi(h)−Wi(h−1) = h

(
fi(h+1)−fi(h)

)
≥ 0, ∀h

since fi(·) is non-decreasing.
Consider the cost functions to be weighted linear functions

of AoI, i.e let fi(Ai(t)) = wiAi(t), with positive weights
wi. This is the setting considered in [7] and [8]. The Whittle
Index for source i is then given by Wi(Ai(t)) = wi(A

2
i (t) +

Ai(t))/2. This is the same as the Whittle index found in [7],
where the authors showed that the Whittle policy is optimal
for symmetric settings when all the weights are equal. We
also establish that for N = 2, the Whittle index policy is
optimal even for asymmetric settings.

Theorem 3: For the functions of age problem with
reliable channels and two sources, the Whittle index
policy is exactly optimal.

Proof: See Appendix F in the technical report [21].
Next, we discuss some general properties that an optimal

policy satisfies. These properties help us establish the opti-
mality of the Whittle index policy for N = 2.

A. Properties of an Optimal Policy

For the functions of age problem, a policy is stationary if
it depends only on the current values of age. A cyclic policy
is one that repeats a finite sequence of actions in a fixed
order. We define the space of policies that are stationary and
periodic.

Definition Stationary Cyclic Policies
A stationary cyclic policy is a stationary policy that
cycles through a finite subset of points in the state space,
repeating a fixed sequence of actions in a particular
order.

In [12], the authors show that for reliable channels there
exists an optimal policy that is stationary, cyclic and can be
found by solving the minimum average cost cycle problem
over a large graph.

We look at this cyclic policy and analyze its properties.
If there are multiple such cycles, we consider a cycle with
the shortest length. We denote the length of the cycle by
T and age vectors on the cycle to be x1, . . . ,xT . Let
the corresponding scheduling decisions be d1, . . . , dT . This
implies that for state xk, taking action dk leads to the state
xk+1, where the subscripts cycle back to 1, 2, . . . after T .

We establish an important structural property that such an
optimal policy must satisfy, which we call the strong-switch-
type property. We call the policies that satisfy this property
strong-switch-type policies.

Definition Strong-switch-type Policies
Consider a stationary policy π that maps every point in



the state space Z+N

to the set of arms {1, . . . , N}. We
say that such a policy is strong-switch-type if

π(x1, . . . , xN ) = i

implies
π(x′1, . . . , x

′
N ) = i,

for all x and x′ such that x′i ≥ xi and x′j ≤ xj , ∀j 6= i.

In words, the strong-switch-type property implies that if
a policy decides to activate arm i for a state vector x, then
for a state vector x′ with a higher age for the ith source
and lower ages for all the other sources, it still decides to
activate source i. Note that our definition of strong-switch-
type policies is a stronger version of the switch-type policies
introduced in [13].

Theorem 4: For the functions of age problem with
reliable channels, no state-action pairs that are a part of
the shortest length optimal cyclic policy can violate the
strong-switch-type property.

Proof: See Appendix C in the report [21].
We can prove this result for general values of N . However,

to extend the strong-switch-type property over the entire
state-space, we consider systems with up to three sources.

Theorem 5: There exists an optimal stationary policy
for the functions of age problem with reliable channels
and up to three sources that has the strong-switch-type
property over the entire state-space.

Proof: We have already established that points on the
minimum average cost cycle satisfy the strong-switch-type
property. We extend this policy over the entire state space
while maintaining the strong-switch property to obtain a well
defined stationary policy in Appendix D in the technical
report [21].

While we prove this result for up to three source and
reliable channels, we believe that the strong-switch-type
property is a natural property that some optimal policy must
have in general, due to monotonicity of cost functions.

We now define the space of policies that can be found as
a result of the Whittle Index based approach.

Definition Index Policies
Consider a stationary policy π that maps every point in
the state space Z+N

to the set of arms {1, . . . , N}. We
say that such a policy is an index policy if

π(x1, . . . , xN ) = arg max
1≤i≤N

{
Fi(xi)

}

for all x, where Fi : Z+ → R are monotonically non-
decreasing functions for all i.

Observe that if Fi are the same as Wi in the above defini-
tion, then we get back the Whittle Index Policy. Also, note
that an index policy always satisfies the strong-switch-type
property by definition. This is because the index functions
Fi(·) are monotonically non-decreasing. We now show that
index policies are in fact the same as strong-switch-type
policies.

Theorem 6: For the functions of age problem, every
policy that is strong-switch-type is also an index policy.

Proof: The proof is based on induction on the number of
sources. We assume that every strong-switch-type policy can
be represented as an index policy for systems with N sources.
Using this fact, we show that strong-switch-type policies
can also be represented as index policies for systems with
N + 1 sources. We also show that the two types of policies
are equivalent for the single source decoupled problem, thus
completing the proof. The details are in Appendix E in the
technical report [21].

An important point to notice is that while we use the
reliability of channels in the proof of Theorem 5, we do not
use any such condition for the proof of Theorem 6. Thus,
strong-switch-type policies are equivalent to index policies
regardless of channel connectivity.

Theorems 5 and 6 together imply the following corollary.

Corollary 1: For the functions of age problem with
reliable channels and up to three source, there exists a
stationary optimal policy that is an index policy.

In other words, there exists an optimal policy that looks
like the Whittle Index policy in that the arm to be activated
has the maximum value among monotone index functions
that take as arguments only the states of individual arms.
This hints at why the performance of Whittle Index policies
may be close to optimal.

Observe that the Whittle Index policy would be optimal
in general if we could show that it achieves a cost that is
minimum among the space of index policies and that the
strong-switch-type property holds for some optimal policy.
We show that this is indeed the case for N = 2. However, we
later provide an example that shows that the Whittle policy
is not optimal, but only close to optimal, for N = 4.

We leave the question of whether the Whittle index policy
is at most a constant factor away from optimal in general
to future work. We believe that the structural properties
introduced here provide a recipe to proving constant factor
optimality of the Whittle index policy, even for general bandit
problems with similar underlying structure.



V. UNRELIABLE CHANNELS

We now consider independent Bernoulli channels between
every source and the base station, with probability of success
pi for source i. We derive a Whittle index in this setting and
establish indexability of the RMAB problem by enforcing a
bounded cost condition on the functions fi(·).

An important fact to notice is that monotonicity in itself is
not sufficient to ensure that the system has finite average cost
even for N = 1, in the case of unreliable channels. Consider
a single source case where f(a) = 3a and the probability
of success p = 0.5. If the source attempts a transmission in
every time-slot, the expected average cost satisfies

lim sup
T→∞

T∑
t=1

(3t)
0.5T

T
≤ lim sup

T→∞

1

T
E
[ T∑
t=1

3A(t)

]
, (8)

since with probability 0.5, the transmission fails and age
increases by 1 in every time-slot. However, observe that the
summation on the left goes to infinity and thus the expected
average cost goes to infinity. This happens despite the source
attempting a transmission in every time-slot. To prevent such
a situation from happening we enforce the following bounded
cost condition on the age cost functions fi in addition to
monotonicity

∞∑
h=1

fi(h)(1− pi)h <∞. (9)

It can be shown that this condition ensures that the single
source case has bounded cost. We define the decoupled
problem in this case as follows

Definition Decoupled Problem
Consider a single arm with the state space Z+, probabil-
ity of success p and an associated non-decreasing cost
function f : Z+ → R+ that satisfies the bounded cost
condition. Let the state of the arm be A(t). If the arm
is active at time t, its evolution is given by

A(t+ 1) =

{
A(t) + 1, w.p. 1− p
1, w.p. p.

If the arm is not active in time-slot t, then the state
evolution is given by

A(t+ 1) = A(t) + 1. (10)

There is a strictly positive activation charge C to be paid
in every time-slot that the arm is pulled.

As before, our goal is to find a scheduling policy that
minimizes the time-average cost of running this system.

Theorem 7: The optimal policy for the decoupled
problem is a stationary threshold policy. Let H satisfy

p2(H − 1)

( ∞∑
k=H

f(k)(1− p)k−H
)
− p
(H−1∑

j=1

f(j)

)
≤ C

≤ p2H

( ∞∑
k=H+1

f(k)(1− p)k−H−1

)
− p
( H∑
j=1

f(j)

)
(11)

Then, the optimal policy is to activate the arm at time-
slot t if A(t) ≥ H and to let it rest otherwise. If no such
H exists, the optimal policy is to never activate the arm.

Proof: See Appendix G in the technical report [21].
Observe that taking the limit as p→ 1 in Theorem 7, we

get back the threshold policy for reliable channels derived
in Theorem 1. We now establish indexability and derive the
functional form of the Whittle Index.

Theorem 8: The indexability property holds for the
decoupled problem. Denote by W (h) the Whittle index
in state h. Given indexability, W (h) is the infimum
charge C that that makes makes both decisions (activate,
not activate) equally desirable in state h. The expression
for W (h) is given by

W (h) = p2h
( ∞∑
k=1

f(k + h)(1− p)k−1
)
− p
( h∑
j=1

f(j)
)
.

(12)

Proof: See Appendix H in the report [21].
Again, observe that taking the limit as p → 1, we get

back the Whittle Index derived in Section IV. Further, if we
assume that the cost functions are weighted linear functions
of AoI, i.e. fi(Ai(t)) = wiAi(t) where all the weights are
positive, then the index functions for the Whittle policy are
given by Wi(Ai(t)) = wipiAi(t)(Ai(t) + 1+(1−pi)

1−(1−pi) )/2. This
corresponds to the index policy developed in [7], where the
authors showed that for symmetric settings when all the
weights and channels probabilities are equal, the Whittle
index policy is optimal.

VI. SIMULATIONS

First, we compare the optimal policy, found using dynamic
programming, with the Whittle index policy for two sources.
We consider six different settings in total - 3 sets of functions,
each with reliable and unreliable channels.

For settings A1 and A2, the cost functions are chosen to
be f1(x) = 13x and f2(x) = x2. In A1, we consider reliable
channels, i.e. p1 = p2 = 1. In A2, we consider unreliable
channels, specifically p1 = 0.9 and p2 = 0.5. For settings
B1 and B2, the cost functions are chosen to be f1(x) =
x2 and f2(x) = 3x. In B1, we consider reliable channels,



i.e. p1 = p2 = 1. In B2, we consider unreliable channels,
specifically p1 = 0.65 and p2 = 0.8. For settings C1 and
C2, the cost functions are chosen to be f1(x) = x3/2 and
f2(x) = 10 log(x). In C1, we consider reliable channels,
i.e. p1 = p2 = 1. In C2, we consider unreliable channels,
specifically p1 = 0.55 and p2 = 0.75. Simulation results are
presented in Table I.

Setting Optimal Cost Whittle Index Cost

A1 (reliable) 21.95 21.95
A2 (unreliable) 36.12 36.28
B1 (reliable) 8.48 8.48

B2 (unreliable) 23.16 23.37
C1 (reliable) 5.69 5.69

C2 (unreliable) 21.54 21.54

TABLE I: Cost of the Whittle index policy and the optimal
dynamic programming policy for 2 sources.

We find the optimal cost for each setting using finite
horizon dynamic programming over a horizon of 500 time-
slots. For reliable channels, we find the cost of the Whittle
index policy by simply implementing it once over 500 time-
slots. For unreliable channels, we estimate the expected
Whittle index cost by averaging the performance of the
Whittle policy over 500 independent runs.

Observe that the Whittle index policy is exactly optimal
when the channels are reliable, as expected from our theoret-
ical results. The expected cost for the Whittle index policy
is very close to the optimal cost for unreliable channels as
well. Also, for the same set of functions, having unreliable
channels increases the cost compared to reliable channels, as
is expected.

Next, we compare the optimal policy with the Whittle
index policy for more than two sources. Simulation results
are presented in Table II.

For settings D1 and D2, we consider 3 sources. The
cost functions are chosen to be f1(x) = x2, f2(x) = 3x

and f3(x) = x4. In D1, we consider reliable channels, i.e.
p1 = p2 = p3 = 1. In D2, we consider unreliable channels,
specifically p1 = 0.66, p2 = 0.8 and p3 = 0.75.

For settings E1 and E2, we consider 4 sources. The cost
functions are chosen to be f1(x) = x3, f2(x) = 2x, f3(x) =
15x and f4(x) = x2. In E1, we consider reliable channels,
i.e. p1 = p2 = p3 = 1. In E2, we consider unreliable
channels, specifically p1 = 0.7, p2 = 0.9, p3 = 0.67 and
p4 = 0.8.

No. of Sources Setting Optimal Cost Whittle
Index Cost

3 D1 (reliable) 44.23 44.23
D2 (unreliable) 161.19 161.39

4 E1 (reliable) 73.36 73.36
E2 (unreliable) 129.02 130.94

4 F1 (reliable) 87.66 88.27
F2 (unreliable) 158.35 159.81

TABLE II: Cost of the Whittle index policy and the optimal
policy for more than 2 sources.

For settings F1 and F2, we consider 4 sources. The cost
functions are chosen to be f1(x) = x3, f2(x) = ex, f3(x) =
15x and f4(x) = x2. In F1, we consider reliable channels, i.e.
p1 = p2 = p3 = 1. In F2, we consider unreliable channels,
specifically p1 = 0.8, p2 = 0.85, p3 = 0.75 and p4 = 0.66.

We observe that the cost of the Whittle index policy is
the same as that obtained using dynamic programming for
settings D1 and E1. However, for setting F1, we observe
a small gap in performance between the two policies, thus
giving us an example that shows that the Whittle index policy
need not be optimal, in general. We also verify that the
optimal policy found using dynamic programming follows
a cyclic pattern that satisfies the strong-switch-type property
and is distinct from the Whittle index policy. This is also in
line with our discussion on structural properties.

We also note that computing the optimal policy using
dynamic programming becomes progressively harder in terms
of space and time complexity for larger values of N , as the
state-space to be considered grows exponentially with N .
The Whittle index policy, on the other hand, is very easy to
compute and implement with only a linear increase in space
and time complexity with the number of sources. Also, as
is evident from simulations, the performance of the Whittle
policy is close to optimal in every setting considered, thus
making it a very good low complexity heuristic.

VII. CONCLUSION

In this work, we presented the problem of minimizing
functions of age of information over a wireless broadcast
network. We used a restless multi-armed bandit approach to
establish indexability of the problem and found the Whittle
index policy. For the case with two sources and reliable
channels, we were able to show that the Whittle index policy
is exactly optimal. We also established structural properties of
an optimal policy, for the case with reliable channels. These
properties hint at why the performance of the Whittle index
policy is close to optimal in general.

A possible direction of future work is to try and prove
constant factor optimality of the Whittle index policy in
general, using the structural properties developed in this
work. Another interesting extension would be to consider
sources with stochastic arrivals instead of active sources.
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APPENDIX

A. Proof of Theorem 1

Consider the decoupled problem described in Section IV.
Let u(t) be an indicator variable that denotes whether the
arm is pulled or not at time t. Under a scheduling policy π
that specifies the value of u(t) for all instants of time, the
average cost is given by

lim
T→∞

1

T

T∑
t=1

[
f
(
Aπ(t)

)
+ Cuπ(t)

]
. (13)

We want to find a policy that minimizes this cost over the
space of all policies. Let S : Z+ → R denote the differential
cost-to-go function for this problem, let u : Z+ → {1, 0} be
the stationary optimal policy and let λ denote the optimal
cost. Then, the Bellman equations are given by

S(h) = f(h)+ min
u(h)∈{1,0}

{C, S(h+1)}−λ, ∀h ∈ Z+. (14)

Without loss of generality we set S(1) = 0. Assume that the
optimal policy has a threshold structure, i.e. there exists H
such that it is optimal to pull the arm (u(h) = 1) for all
states h ≥ H and let it rest otherwise (u(h) = 0). If this the
case, then the Bellman equations reduce to

S(h) = f(h) + C − λ, ∀h ≥ H. (15)

Using the monotonicity of f(·), we conclude that S(h+1) ≥
S(h), ∀h ≥ H . We will use this fact later. For the state H−1,
we get

S(H − 1) = f
(
H − 1

)
− λ+ S(H)

= f
(
H − 1

)
− λ+ f(H)− λ+ C.

(16)

Repeating this k times, we get

S(H − k) =
k∑
j=0

f
(
H − j

)
− (k + 1)λ+ C, (17)

for all k in {1, . . . ,H−1}. Observe that since we set S(1) =
0, we get

λ =

∑H
j=1 f(j) + C

H
, (18)

by putting k = H − 1 in (17). Now assume that H further
satisfies the relation given in Theorem 1, i.e.

f(H) ≤
∑H
j=1 f(j) + C

H
≤ f(H + 1). (19)

Using (18), we can simplify (19) as

f(H) ≤ λ ≤ f(H + 1). (20)

Adding C − λ to every term above, we get

f(H) + C − λ ≤ C ≤ f(H + 1) + C − λ
=⇒ S(H) ≤ C ≤ S(H + 1).

(21)

Observe that we assumed f(·) to be non-decreasing. This
combined with (20) and the Bellman equations (15) and (17)
ensures that S(·) is also non-decreasing. Thus, if there exists
a state H that satisfies (19), then the threshold policy with
threshold H satisfies the Bellman equations and is hence
optimal.

The one thing that remains to be shown is the case in
which we cannot find some H that satisfies (19). We leave
the details of this case to the technical report [21].
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